منابع مشابه
Characterizations of Jordan derivations on triangular rings: Additive maps Jordan derivable at idempotents
Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...
متن کاملGeneralized Derivations on Modules *
Let A be a Banach algebra and M be a Banach left A-module. A linear map δ : M → M is called a generalized derivation if there exists a derivation d : A → A such that δ(ax) = aδ(x) + d(a)x (a ∈ A,x ∈ M). In this paper, we associate a triangular Banach algebra T to Banach A-module M and investigate the relation between generalized derivations on M and derivations on T . In particular, we prove th...
متن کاملNearly Generalized Jordan Derivations
Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2014
ISSN: 1846-3886
DOI: 10.7153/oam-08-69